
Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 1

Review for Programming

Exam and Final Exam

Larry Caretto

Mechanical Engineering 309

Numerical Analysis of
Engineering Systems

May 5, 2014

Outline
• Programming and Final exams

– VBA and MATLAB basics

– Roots of equations

– Matrix algebra and solution of

simultaneous equations

– Numerical differentiation

– Interpolation

– Regression

– Quadrature

– Numerical solution of ODEs

Programming Exam

• Can choose to use VBA or MATLAB

• Will have one relatively simple problem

with two hours to get solution

– Open book, notes, online help, but no

internet searches for code

• Will have test cases with known solutions

– Use test cases to verify program correctness

• Done with Excel workbook or commands

from MATLAB command window
3

Programming Exam Rules

• Each student does own work and

emails results to instructor

• No instructor help for programming

– Can ask questions to clarify exam

– Can get help for grave problems like

computer crash

• Try to get as much done as possible

– Describe future steps if you have not

finished

4

Final Exam Reminder

• Monday, May 12, 8 to 10 pm, this room

• Closed book, no notes, no computer, no

consultation, etc.

• Will be given necessary equations

– If you think that some equation is missing

ask and it will be provided

• Final will have same kinds of problems

as midterm, with new algorithms mainly

5

Final Exam Problems

• Write simple VBA and MATLAB code

(for general calculations or a given

numerical algorithm)

• Given a numerical algorithm, evaluate a

few steps with your calculator

• May be some short questions like how

many data points does it take to fit a

cubic polynomial or short exercises with

matrices
6

Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 2

Possible Numerical Algorithms

• Roots of equations, f(x) = 0, single

equations only

• Simultaneous linear algebraic equations

• Interpolation

• Regression

• Numerical integration

• Numerical solution of Ordinary

Differential Equations

7

Review VBA

• Option Explicit

• Dim and Const statements

• Expressions with operator precedence

and replacement statements

– Arithmetic, relational, logical and string

operators

• Type conversion

– Implicit as in MsgBox “ x = “ * x

– Explicit with conversion functions like CDbl
8

Choice Statements

• The If statement

If <condition> Then

<statements to be executed if

the condition is true>

End If

<Transfer control here if condition is

false; normal transfer at end of if code>

• Alternative version for one statement in If

If <condition> Then <statement>

9

<condition> must

have a Boolean value

of true or false

If – Else If Explained

If <condition1> Then

<Statements done if condition1 is true>

Else If <condition2> then

<Statements done if condition2

Else If <condition3> then

<Statements done if condition3

<May be other conditions>

Else

<Statements done if all conditions false>

End If

<Execute here after any statements done>
10

– If any condition is true, the
statements following the If
or Else If are executed

– Once those statements are

executed controls to the first
statement after the End If

– Statements for only the first

true condition are executed

– The Else block is optional

• If no conditions are true those

statements are executed

Looping

• Count control loop repeats code a fixed

number of time

• Conditional looping repeats while a

condition is true or until a condition is

false

• Both types of loops may be nested

• May use Exit For or Exit Do statements

to exit loop before normal exit

11

Count Controlled Loop

For <counter> = <start> to <end>

<statements>

Next <counter>

For <counter> = <start> to <end> _

Step <increment>

<statements>

Next <counter>

Statements in loop repeated nTimes = (<end> –

<start>) /<increment> + 1

Loop not executed if nTimes <= 0
12

If Step not specified,

<increment> = 1

Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 3

Count Controlled Examples

x = 1 : term = x : sum = term

For n = 1 to 10
term = term * x / n

sum = sum + term

Next k

relErr = abs(sum/exp(x) – 1)
13

For k = 1 to 11 step 3

msgBox k

Next k

Code at left

computes ex

for x = 1 with

relative error

of 1x10-8

Conditional Loop

<cond> is a condition (can be true or false)

<stmts> are statements executed in the

loop (which should change the condition)

14

Do
<stmts>
if <cond> _
Then Exit Do
<stmts>

Loop

Do While <cond>
<stmts>

Loop

Do Until <cond>
<stmts>

Loop

Do
<stmts>

Loop While <cond>

Do
<stmts>

Loop Until <cond>

Note tests before or after loop

Nested For Loops

• For loops used with arrays

• Nested for loops for 2D arrays

15

For k = n To 1 Step -1
x(k) = a(n,n+1)
For j = k+1 to n

x(k) = x(k) – a(k,j) * x(j)
Next j

Next k

k index in

reverse order

(from high to

low)

What happens to the j loop, the

first time in the k loop when k = n?

nTimes = [n - (n+1)]/1 +1 = 0, so

loop is not executed

Arrays

• Arrays can be visualized as data on an

experimental variable

– Could describe pressure data points

mathematically as P1, P2, etc.

– In VBA we can represent these data points

as P(1), P(2), etc.

– We call the numbers (1, 2, etc.) indices or

subscripts

• We can use constants or variables for the

subscripts: P(4), P(k), where k has a value

16

Two-dimensional Arrays

17

I(1) I(2) I(3) I(4) I(5) I(6)

V(1) e(1,1) e(1,2) e(1,3) e(1,4) e(1,5) e(1,6)

V(2) e(2,1) e(2,2) e(2,3) e(2,4) e(2,5) e(2,6)

V(3) e(3,1) e(3,2) e(3,3) e(3,4) e(3,5) e(3,6)

V(4) e(4,1) e(4,2) e(4,3) e(4,4) e(4,5) e(4,6)

Consider an experiment where you vary the current

over six levels, the voltage over four levels and

measure the efficiency, e, of an electromechanical

device. The data for each combination of current

and voltage can be represented as shown below

Dimensioning Arrays

• Can declare arrays as follows

Dim I(1 to 6) as double

Dim V(1 to 4) as double

Dim e(1 to 4, 1 to 6) as double

• Size below depends on Option Base

Dim I(6) as double

Dim V(4) as double

Dim e(4, 6) as double

18

What is lowest sub-

script for these arrays?

Zero or one depending

on Option Base

Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 4

Using Arrays

• Arrays components are referenced by

their subscripts

• This is often done in a For loop

For k = 0 to 100

x(k) = sin(k * PI / 100)

Next k

• x is an array with 101 components giving

sin(x) for 0  x  p, with Dx = p/100

19

Two-Dimensional Arrays

• Use nested for loops

– Use example of current and voltages

For k = 1 to 4

For j = 1 to 6

Power(k,j) = I(j) * V(k)

Next j

Next k

20

Recall table:

V was in rows

I was in columns

Power(k,j) is Power(row, column)

Are k and j indices correct?

Dynamic Arrays

• What if you do not know array size until

program is actually running?

• Use Dim a() to tell compiler that a is an

array then use ReDim with actual

dimensions

Sub getArray(N as long) as Variant

Dim x() as Double : ReDim X(1 to N)

• Can go from Dim a() as Double to any

size ReDim: ReDim a(1 to 10, 6 to 12)
21

Passing Arrays to Procedures

• Declare array in argument list with

parentheses to indicate array

Sub mine(A() as double)

‘No dim statement for A

A(2,3) =

• Calling program sets actual dimensions

on array and uses only the following

Dim B(1 to 10, 1 to 6) as double

Call mine(B)
22

Use this for any

size array.

Variant arrays

do not need ()

Determining Array Bounds

• The UBound and LBound functions

determine the upper and lower bounds

of unknown array dimensions

• For a two-dimensional array, A(m,k)

– LBound(A,1) is the lower bound of m

– UBound(A,1) is the upper bound of m

– LBound(A,2) is the lower bound of k

– UBound(A,2) is the upper bound of k

23

Worksheet Arrays to VBA

• Passed as a range of cells

• First step is to set a type variant vari-

able equal to the input range variable

– The variant variable is now an two-

dimensional array

– May have single row or single column, but

is still a two-dimensional array

– Lower bound is always one

– Can use UBound to get sizes

24

Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 5

Worksheet Array Example

Function getMean (Ain As Range) _
As Double

Dim A as Variant
Dim sum As double, cells As Long, k As Long
Dim nRows As Long, nCols As Long, m As Long
A = Ain : nRows = UBound(A,1) : sum = 0
nCols = UBound(A, 2) : cells = nRows * nCols
For k = 1 To nRows

For m = 1 To nCols
sum = sum + A(k,m)

Next m
25

Code from red line to

end on next slide

Worksheet Array Example II

Dim sum As double, cells As Long, m As Long
Dim nRows As Long, nCols As Long, k As Long
A = Ain : nRows = UBound(A,1) : sum = 0
nCols = UBound(A, 2) : cells = nRows * nCols
For k = 1 to nRows

For m = 1 to nCols
sum = sum + A(k,m)

Next m
Next k
getMean = sum / cells
End Function

26

VBA Array to Worksheet

• VBA steps to return array to worksheet

– Declare the function type as Variant

– In the function or sub declare a working

array for calculations

• Use application.caller for dimensions

– Write the code for values in working array

– At end of function set <function name> =

<working array name>

• To use the function: select cells; enter

function in formula bar; Cont+Shift+Enter
27

Function array2wks(<arguments>) As Variant

Dim userRows As Long

Dim userColumns As Long

Dim workArray() as Double

'Statements below determine rows and columns

userRows = Application.Caller.Rows.Count

userColumns = Application.Caller.Columns.Count

ReDim workArray(1 to userRows, 1 to userColumns)

‘Place code here to compute all

‘components of workArray

array2wks = workArray

End Function
28

Strings

• Consider only variable length

• Use Dim str as String

• Use & or + as concatenation operator to

join two strings

• Len(str) gives length of string

• Left, Right, and Mid give substrings in

same manner as worksheet functions

• InStr function searches for substrings

29

Getting Programs to Work

• VBA detects syntax errors (one-line)

• Compilation (before execution) detects

structure errors (more than one line)

• Programs will halt at many errors (like

divide by zero)

• Programs will return errors like #NAME

to worksheet instead of results

• Use test cases to make sure that a new

program is working correctly
30

Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 6

Getting Programs to Work
• Syntax errors: errors in single line

– Line turns red after “completed” with

optional error message and location

• Select auto-syntax check

• Compilation errors: errors in program

structure involving more than one line

– E.g. If statement without following End If

– E.g. Next statement without preceeding For

– Could get “incorrect” error message for

nested structures (see next slide)
31

Misleading Error Message

• Error

message

when

Next is

omitted,

but End If

included

to match

If

32

Identified Run-time Errors

• Syntax/compilation usually, but not

always, easy to remedy

• Some run-time errors will stop and allow

debugging (Click “Debug” button)

33

Run-time Error Highlighted

• After clicking “Debug” on previous dialog

34

• Highlighted statement

caused run-time error

– Real error cause is

values set for k and m

are both zero

• Need to trace back

from error statement to

error cause

#NAME Error
• This error may be returned by a UDF

when the function cannot be found
– It was never defined

– It is located in a different workbook

– There is a module with the same name

– The name is misspelled in the call

– Arguments in the function call do not match

arguments in the function header

– Function is not located in a module (located

on code for worksheet or ThisWorkbook)

– Private Function located in a different module
35

#VALUE Error

• Returned to worksheet when there is an

execution error that VBA cannot trap

– Often linked to attempts to exceed array

bounds

• To find such errors use the debugger repeated

times to find the statement causing the error

• Locate area in code where execution halts for

no apparent reason

• Find exact statement where this error occurs

• Hover mouse to find “out-of-range” arrays or

other possible errors
36

Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 7

Incorrect Results
• Programs should always be tested with

inputs whose solution is known

• If this solution is not found, use

debugger to step through program to

find errors

• Use worksheet to compute intermediate

results to check against program values

– Divided-difference table for polynomial

interpolation as an example

• Worksheet formulas may have errors too
37

Debugging

• Debugger allows you to step through a

program and see intermediate values

– Useful to find location of errors

• Items to use in debugger

– Breakpoints stop execution at certain points

– Step-by-step execution

– Intermediate and Watch windows

– Hover mouse over variable to get its value

– Change statement to be executed next
38

Useful Toolbar Icons

39

Start execution

(will stop at

breakpoint)

Halt execution

Step into (F8)

Step

over Step

out

Add

watch

Quick

Watch

Comment and

“uncomment”

blocks of text

Right-click in left margin to set and clear breakpoints

Step to cursor

Hovering Mouse

• Can hover mouse over scalars to show

values of variables

– Does not work for whole arrays, but works

for array components

40

Reddish background

indicates breakpoint

Watch Window

41

– Use “Add Watch” to

specify variables and

Watch Type

– View variables in Watch

Window

Help

• Help systems for Excel and VBA

• Search function does not always return

what you are looking for

• If you know the keyword, type it, place

the cursor in the keyword, and press F1

• Sometimes a Google search for “VBA

<subjectYouAreInterestedIn>” works

42

Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 8

MATLAB Review I

• Ways of performing commands

– Command window

• Answers may be suppressed with semicolon

• Default answer variable is ans

– Functions and scripts

– Anonymous functions

• Data entry commands for arrays

– X = [1 2 3; 4 5 6; 7 8 9; 10 11 12]

• Spaces between data on same row

• Semicolons to start new row
43

MATLAB Review II

• Subarray commands x(r1:r2, c1:c2)

– Use only : for complete row or column

• Other array definition: low:delta:high

– Can omit delta if delta = 1

• Can get functions of arrays

– t = 0:pi/100:2*pi; y = sin(t); plot(t,y)

• Transpose matrix: AT in MATLAB is A'

– Command A = [1 2 3]'gives

44

𝐴 =
1
2
3

MATLAB Review III

• Matrix operations (+ - * / ^)

• Term-by-term operations (+ - .* ./ .^)

• Valid operations between matrix, X, and

scalar a: a + X, a - X, a * X, a ./ X, X/a

• Can create larger matrices from smaller

ones if they are compatible

– C = [A B] if A and B have same rows

– C = [A; B] if A and B have same columns

45

Trajectory Function Example

function [x, y] = traj(v0, theta, N)
%Computes frictionless trajectory
%Uses SI units (meters, seconds)
%V0 is initial speed in m/s
%theta is initial angle in degrees
%N is number of points computed
g = 9.80665; %gravity in m/s^2
tMax = 2 * v0 * sind(theta) / g;
t = 0:tMax/(N-1):tMax;
x = v0*cosd(theta) * t;
y = v0*sind(theta) * t - g * t .^ 2/2;
plot(x,y);
end

46

Use file

names the

same as the

function

names (e.g.

traj.m) to

save

functions

Use semicolons to avoid

intermediate output from

function code

Array

operation

Using Your MATLAB Functions

• Used as any MATLAB Function

47

>>v0 = 10;

>>theta = 60;

>>N = 100;

>>[x, y] = traj(v0, theta, N);

• Can use only part of return variables

– >>= traj(v0,theta,N) returns x values in ans

– >>x = traj(V0,theta,N) returns x values in x

MATLAB if Statements

• Use the following format

if <expression1>

<statements1>

elseif <expression2>

<statements2>

<other elseif’s possible here>

else %optional

<statements>

end

48

Same structure

as VBA but

“Then” not used

All keywords (if,

else, elseif) in

lower case

Final statement

is end, not endif

Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 9

MATLAB While Statement

• MATLAB has only one conditional

looping command with a test before

while <condition>

<statements>

end

• The <statements> in the while loop

continue to execute while the

<condition> is true

49

MATLAB

keywords (while

and end) must

be lower case

MATLAB for Statement

• Similar to VBA For statement, but loop

limits are a MATLAB array specification

for <index> = <MATLAB array>

<statements>

end

• Examples of for statements

for T = [300, 500, 1000, 5000]

for x = 0 : 0.01 : 2

for k = 1 : 25 (Same as 1:1:25)

50

Review Roots of Equations

• Write equation in form f(x) = 0

• Methods solving f(x) = 0

– Bisection

– Secant method

– Newton’s Method

– False position (regula falsi)

– Successive substitution

– May be given algorithm for other method

and asked to apply it

51

Methods and Process

• Bisection and False Position require two

initial guesses that bracket root

• Newton’s method requires one guess

• Secant method requires two guesses

(do not have to bracket root)

• Different convergence conditions

– Absolute error in Dx or f(x)

– Relative error in Dx

– Combination of above
52

Matrix Basics

• Define an m by n matrix as an array of

with m rows and n columns

𝑨 =

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

– Row, column, diagonal, unit, null, inverse

and transpose matrices

• Matrix equality, addition, subtraction

require same size matrices

53 54

General Matrix Multiplication
• For matrix multiplication, C = AB

– A has n rows and p columns

– B has p rows and m columns

– C has n rows and m columns),1;,1(

1

mjni

abc
p

k

kjikij



























































1210

627

)1(0)2(2)4(4)6(0)1(2)3(4

)1(6)2(0)4(3)6(6)1(0)3(3

16

21

43

024

603

AB

BA

• Example

Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 10

55

From Equations to Ax = b

















































































14

3

8

268

142

373

268

142

373

321

321

321

3

2

1

xxx

xxx

xxx

x

x

x

3x + 7y – 3z = 8

2x – 4y + z = -3

8x + 6y – 2z = 14

• Usual form for

N = 3

equations

• An equation is a row in the Ax = b format

A x = Ax = b

56

Gaussian Elimination

• Solve the set

of equations

on the right)(14837

)(13923

)(342642

321

321

321

iiixxx

iixxx

ixxx























 

















 

















 
















 
)34(

2

3
13)26(

2

3
9)4(

2

3
22

2

3
3 321 xxx







































































)34(

2

7
14)26(

2

7
8)4(

2

7
32

2

7
7 321 xxx

• Subtract –3/2 times (i) from equation (ii)

and 7/2 times (i) from (iii)

Unnecessary computer operations

57

Gaussian Elimination II

• Result from
first set of
operations

13399170

383040

342642

321

321

321







xxx

xxx

xxx

• Subtract
17/(-4) times
(ii) from (iii)

2

57

2

57
00

383040

342642

321

321

321







xxx

xxx

xxx































































)38(
4

17
133)30(

4

17

99)4(
4

17
17 32 xx

• Final upper-
triangular form

Back Substitution

58

2

57

2

57

38304

342642

3

32

321







x

xx

xxx

• Final upper-
triangular form

1
2

57

2

57
3 x

• Solve third
equation for x3

• Solve second
equation for x2

 
2

4

13038

4

3038 3
2 











x
x

• Solve first equation for x1

   
0

2

1262434

2

26434 332
1 







xxx
x

Solutions for Ax = b

• For a set of n equations in n unknowns

– If Rank(A) = Rank([A b]) = n there is a

unique solution 2x + y = 4; 2x – y = 0

– If Rank(A) = Rank([A b]) < n: an infinite

number of solutions x + y = 1; 2x + 2y = 2

– If Rank(A)  Rank([A b]) there are no

solutions x + y = 1; 2x + 2y = 3

• Use Gaussian elimination to find Rank

as number of nonzero rows

59

Numerical Differentiation

• Formulas have following properties

– Type of derivative (first, second, third, etc.)

– Direction of points used in the derivative,

relative to the point of the derivative

(forward, backward, central)

– Order of the error: O(hn) is an nth order

error (truncation error proportional to hn)

• Roundoff error occurs when h is so

small that significant figures are lost

60

Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 11

Some Derivative Expressions

61

 hO
h

ff
f ii
i 


 1'  hO

h

ff
f ii
i 


 1'

 211'

2
hO

h

ff
f ii
i 


 

 212'

2

34
hO

h

fff
f iii
i 


 

 212'

2

34
hO

h

fff
f iii
i 


 

 2

2

11'' 2
hO

h

fff
f iii
i 


 

Note order of

derivative, order of

error, and direction

(forward vs.

backward)

More Derivative Expressions

62

𝑓𝑖
′′ =

2𝑓𝑖 − 5𝑓𝑖−1 + 4𝑓𝑖−2 − 𝑓𝑖−3

ℎ2 + 𝑂 ℎ2

𝑓𝑖
′ =

−𝑓𝑖+2 + 8𝑓𝑖+1 − 8𝑓𝑖−1 + 𝑓𝑖−2

12ℎ
+ 𝑂 ℎ4

𝑓𝑖
′′ =

−𝑓𝑖−2 + 16𝑓𝑖−1 − 30𝑓𝑖 + 16𝑓𝑖+1 + −𝑓𝑖+2

12ℎ2 + 𝑂 ℎ4

• What is sum of coefficients in numerator

for each expression?

• Is there a reason for this?

Interpolation

• Given a table of data, (xi, yi) estimate a

value of y for an x value not in the table

• Use N+1 table (xi, yi) points for Nth-order

polynomial

• Pick points that surround the value of x

for which the polynomial is to be

evaluated

• Get Newton polynomial from divided

difference table
63 64

Divided Difference Table

x0 y0 a0

a1

x1 y1 a2

x2 y2  a3

x3 y3

01

01
0

xx

yy
F






12

12
1

xx

yy
F






23

23
2

xx

yy
F






02

01
0

xx

FF
S






13

12
1

xx

FF
S






03

01
0

xx

SS
T






65

Divided Difference Example

0 0 a0

a1

10 10 a2

20 40  a3

30 100

1
010

010
0 




F

3
1020

1040
1 




F

6
2030

40100
2 




F

1.
020

13
0 




S

15.
1030

36
1 




S

600

1

030

1.15.
0 




T

66

Divided Difference Example II

• Divided difference table gives a0 = 0, a1

= 1, a2 = .1, and a3 = 1/600

• Polynomial p(x) = a0 + a1(x – x0) + a2(x

– x0)(x – x1) + a3(x – x0)(x – x1)(x – x2)

= 0 + 1(x – 0) + 0.1(x – 0)(x – 10) +

(1/600)(x – 0)(x – 10)(x – 20) = x +

0.1x(x – 10) + (1/600)x(x – 10)(x – 20)

• Check p(30) = 30 + .1(30)(20) + (1/600)

(30)(20)(10) = 30 + 60 + 10 = 100 (Correct!)

Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 12

Linear Regression

67

• Seeks approximate
linear relationship among
data set (xi, yi)

• Fit equation: 𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖

Fitted Line

y

x
indicates data points

y
i

x
i

• Notation 𝑦𝑖 indicates approximate value,
which may be different from data yi

• Equations for a and b based on
minimizing sum of squares of differences
between actual and approximate data

 𝑦i

 𝑦𝑖 − 𝑦𝑖
2 Minimum

Equations for a and b
• Substitute equation for a into equation

for b (both copied below) and solve for b

68

N

xby

a

N

i

i

N

i

i 




 11

0222
1

2

11

 


N

i

i

N

i

i

N

i

ii xbxayx

 

 2
1

2

1

2

11

2

111

xNx

yxNyx

xxN

yxyxN

b
N

i

i

N

i

ii

N

i

i

N

i

i

N

i

i

N

i

i

N

i

ii





















































• First solve for b then solve for a

– Can set a = 0 to force line through origin

• Can use equations with all sums or means

Confidence Limits
• R2 value gives overall measure of fit

– 0 ≤ R2 ≤ 1

– Confidence limits for the regression

parameters a and b based on t statistic and

user-specified confidence limit 1 – a

• Typically choose a = .05 for 95% confidence

69

 

















N

i

i

xyn
N

i

ii

xy

n

xx

x

n
sta

xx

s
tb

1

2

2

|2,2

1

2

|

2,2

)(

1

)(

aa

Standard errors for a and b 70

Multivariate Linear Regression
• In general we can have K predictive

variables, x1 to xk

• General model equation:

• How do we represent the data?
– Each data set consists of one value of y and

one value for each of the xj variables

– For data set m, we can call the value of y, ym,

and we can call the value of xj for data set m xjm

– Multivariate analysis finds coefficients b0 to bK

– Each coefficient has standard error (times t

statistic = confidence interval)

j

K

j

jxbby 



1

0

71

More Equations to be Used

• Compute esti-
mated y values jm

K

j

jm xbby 



1

0
ˆ

 2
1

0

2

1

0

2

2

)ˆ(

1

yNy

yy

R
N

m

m

N

m

mm

























• Compute the R2 value

Numerical integration formulas

72

   4
2

6,4,2

1

5,3,1

0 24
3

hOffff
h

ESdxxfI
N

i

i

N

i

iN

b

a











 









   2
1

1

0

2
hOf

ff
hETdxxfI

N

i

i
N

b

a












 





 kk

k

xff

khax
N

ab
h








• Trapezoid Rule

• Simpson’s (1/3) rule (even N only)

• Basic definitions of step size,

h, number of intervals, N,

x0 = a, xN = b, fk = f(a + kh)

Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 13

Richardson Extrapolation

73

• Have numerical expression, F, for two

different step sizes h and kh

– Call these F(h) and F(kh)

– These expressions have a lead error term

with order n, O(hn) (error proportional to hn)

– Can get higher order expression by using

Richardson Extrapolation formula

• Typically pick k > 1, but it could be < 1 so long

as formula is consistently applied

   
1




n

n

k

khFhFk
RE

Romberg Integration

74

• General forms for initial Tk0 and subse-

quent Tkm

14

4
1

0010

1

11





TT
T10T

00T

30T

20T
14

4
1

1020

1

21





TT
T

14

4
2

1121

2

22





TT
T

14

4
1

2030

1

31





TT
T

14

4
2

2131

2

32





TT
T

14

4
3

2232

3

33





TT
T

  kallhTT k

initk 2/0 

kallkm
TT

T
m

mkmk

m

km ;,,1
14

4 1,11, 







2

ab
hinit




T(h) = Trapezoid rule result

75

Numerical ODE Solution

• Solve initial value problem, dy/dx = f(x,y)
(known) with y(x0) = y0

– Use a finite difference grid: xi+1 – xi = hi+1

– Replace derivative by finite-difference
approximation: dy/dx  (yi+1 – yi) / (xi+1 – xi) =
(yi+1 – yi) / hi+1

– Derive a formula to compute favg the average
value of f(x,y) between xi and xi+1

– Replace dy/dx = f(x,y) by (yi+1 – yi) / hi+1 = favg

– Repeatedly compute yi+1 = yi + hi+1 favg

Order of ODE Methods

• Local error is error after one step when

the initial conditions are known exactly

• Global error is the error after more than

one step

• For an nth-order local error, the global

error has an order of n – 1

• The global error is the more important

error which is used to describe a

method
76

77

Review Notation and Order

• xi is independent variable

• yi is numerical solution at x = xi

• fi is derivative found from xi yi: fi = f(xi, yi)

• y(xi) is the exact value of y at x = xi

• f(xi,y(xi)) is the exact derivative

• e1 = y(x1) – y1 = local truncation error

• Ej = y(xj) – yj is global truncation error

• If e is O(hn), then E is O(hn-1)
78

Review Simple Methods

• Huen’s method (second order)

• Modified Euler method (second order)

 
2

),(
),(),(

2

),(

0

111

0

10

11

1

1

111

0

1
















iiiii

iiii

i

ii

iiiiiiii

yxfhyy
yxfyxf

h
yy

hxxyxfhyy

),(

2
),(

2

2
1

2
111

1

2
1

1

2
1























iiiii

i
iiii

i
ii

yxfhyy

h
xxyxf

h
yy

• Euler: yi+1 = yi + hifi = yi + hi f(xi, yi)
First

order

Review for Final Exam May 5, 2014

ME 309 – Numerical Analysis of Engineering Systems 14

79

Review 4th Order Runge-Kutta

• Uses four derivative evaluations per step

),(

2
,

2

2
,

2

),(

6

22

3114

21
13

11
12

11

11

4321

1

kyhxfhk

k
y

h
xfhk

k
y

h
xfhk

yxfhk

hxx
kkkk

yy

iiii

i
i

ii

i
i

ii

iii

iiiii










 








 




















Systems of ODEs

• Can convert nth order ODE into n first-

order ODEs

• Can apply algorithms for one first-order

ODE to systems of first-order ODEs

– Must have initial conditions on all variables

– Converting an nth order ODE to n first-order

ODEs gives n – 1 derivative ODEs whose

initial values we need

– Must apply each step of algorithms to all

ODEs before going on to next step
80

Example

• Two masses joined by a spring/damper

81

  121
21

2

1

2

1 Fxxk
dt

dx

dt

dx
c

dt

xd
m 










  212
12

2

2

2

2 Fxxk
dt

dx

dt

dx
c

dt

xd
m 










1
1 v

dt

dx


2
2 v

dt

dx


   
1

1
21

1

21

1

1

m

F
xx

m

k
vv

m

c

dt

dv


   
2

2
12

2

12

2

2

m

F
xx

m

k
vv

m

c

dt

dv


• Define velocities

• Original ODEs

for each mass

• Rewrite original

ODEs using

velocities

Example Continued
• Replace x1, x2, v1, v2 in equations below

by y1, y2, y3, y4

82

1
1 v

dt

dx


2
2 v

dt

dx


   
1

1
21

1

21

1

1

m

F
xx

m

k
vv

m

c

dt

dv


   
2

2
12

2

12

2

2

m

F
xx

m

k
vv

m

c

dt

dv


31
1 yf

dt

dy


42
2 yf

dt

dy


   21

1

43

11

1
3

3 yy
m

k
yy

m

c

m

F
f

dt

dy


   12

2

34

22

2
4

4 yy
m

k
yy

m

c

m

F
f

dt

dy


• Result is standard-form system: dyk/dt = fk

ODE Systems

• Convert system of higher order equa-

tions into system of first order ODEs

– Do this by defining new variables for all

higher-order derivatives (order > 1)

• These definitions become simple ODEs for the

resulting system

– Must have initial conditions on all

derivatives so created

– N ODE system form dyk/dt = fk(t, y1,…yN)

• Write function/sub to compute all fk

83

ODE Algorithms

• Many different ones, with different types

– Multistep vs. single-step

– Implicit vs. explicit

– Step-size adjustment for better accuracy

with fewer operations

– Prefer higher-order algorithms

– Special algorithms for stiff systems (wide

variation in time constants)

– Final could give new algorithm and ask you

to take 2-3 steps with calculator
84

