Outline **Review for Programming** · Programming and Final exams Exam and Final Exam VBA and MATLAB basics - Roots of equations Larry Caretto - Matrix algebra and solution of Mechanical Engineering 309 simultaneous equations Numerical Analysis of - Numerical differentiation Engineering Systems Interpolation - Regression - Quadrature May 5, 2014 Numerical solution of ODEs California State University Northridge Northridge

Programming Exam

- Can choose to use VBA or MATLAB
- Will have one relatively simple problem with two hours to get solution
 - Open book, notes, online help, but no internet searches for code
- Will have test cases with known solutions – Use test cases to verify program correctness
- Done with Excel workbook or commands from MATLAB command window
 Caloria State University Northridge
 3

- Each student does own work and emails results to instructor
- No instructor help for programming - Can ask questions to clarify exam
 - Can get help for grave problems like computer crash
- Try to get as much done as possible
 Describe future steps if you have not finished

California State University Northridge

Final Exam Reminder

- Monday, May 12, 8 to 10 pm, this room
- Closed book, no notes, no computer, no consultation, *etc*.
- Will be given necessary equations

 If you think that some equation is missing ask and it will be provided
- Final will have same kinds of problems as midterm, with new algorithms mainly

California State University Northridge

Final Exam Problems

- Write simple VBA and MATLAB code (for general calculations or a given numerical algorithm)
- Given a numerical algorithm, evaluate a few steps with your calculator
- May be some short questions like how many data points does it take to fit a cubic polynomial or short exercises with matrices

California State University Northridge

5

6

Possible Numerical Algorithms

- Roots of equations, f(x) = 0, single equations only
- Simultaneous linear algebraic equations
- Interpolation
- Regression
- Numerical integration
- Numerical solution of Ordinary **Differential Equations**

California State University Northridge

Review VBA

- Option Explicit
- · Dim and Const statements
- · Expressions with operator precedence and replacement statements
 - Arithmetic, relational, logical and string operators
- Type conversion
 - Implicit as in MsgBox " x = " * x
- Explicit with conversion functions like CDbl

Northridge

Choice Statements <condition> must • The If statement have a Boolean value If <condition> Then of true or false <statements to be executed if the condition is true> End If <Transfer control here if condition is false: normal transfer at end of if code> · Alternative version for one statement in If

9

11

California State University Northridge

Looping · Count control loop repeats code a fixed number of time Conditional looping repeats while a condition is true or until a condition is false · Both types of loops may be nested May use Exit For or Exit Do statements

to exit loop before normal exit

Northridge

Count Controlled Loop For <counter> = <start> to <end> <statements> If Step not specified, <increment> = 1Next <counter> For <counter> = <start> to <end> _ Step <increment> <statements> Next <counter> Statements in loop repeated nTimes = (<end> -<start>) /<increment> + 1 Loop not executed if nTimes <= 0 12 Northridge

	T٧	vo-d	lime	nsio	nal A	Array	/S	
Cons over s meas devic and v	ider six le ure f e. 7 roltag	an exp evels, t the effi The da ge can	berime he vol iciency ta for e be rep	nt whe tage ov t, e, of each co presen	re you ver fou an elec ombina ted as	vary th r levels ctrome ation of shown	ne curr s and chanic f curre i below	ent al nt
		l(1)	l(2)	l(3)	l(4)	l(5)	l(6)	
1	/(1)	e(1,1)	e(1,2)	e(1,3)	e(1,4)	e(1,5)	e(1,6)	
1	/(2)	e(2,1)	e(2,2)	e(2,3)	e(2,4)	e(2,5)	e(2,6)	
1	/(3)	e(3,1)	e(3,2)	e(3,3)	e(3,4)	e(3,5)	e(3,6)	
1	/(4)	e(4,1)	e(4,2)	e(4,3)	e(4,4)	e(4,5)	e(4,6)	
California Nort	State Unive hridş	rsity ge						17

Dimensionii	ng Arrays
• Can declare arrays a Dim I(1 to 6) as doub Dim V(1 to 4) as dou Dim e(1 to 4, 1 to 6)	s follows ble ble as double
• Size below depends Dim I(6) as double Dim V(4) as double Dim e(4, 6) as double	on Option Base What is lowest sub- script for these arrays? Zero or one depending on Option Base

Passing Arrays to Procedures• Declare array in argument list with
parentheses to indicate arraySub mine(A() as double)
'No dim statement for A
A(2,3) =Use this for any
size array.
Variant arrays
do not need ()

 Calling program sets actual dimensions on array and uses only the following

Dim B(1 to 10, 1 to 6) as double

California State University Northridge 23

Worksheet Array E	Example
Function getMean (Ain As Rang	e) _ As Double
Dim A as Variant	
Dim sum As double, cells As Lo Dim nRows As Long, nCols As I A = Ain : nRows = UBound nCols = UBound(A, 2) : cells =	ong, k As Long Long, m As Long (A,1) : sum = 0 nRows * nCols
For $k = 1$ To nRows	
For $m = 1$ To nCols	Code from red line to
sum = sum + A(k,m)	end on next slide
Next m	
California State University Northridge	25

Worksheet Array Example II Dim sum As double, cells As Long, m As Long Dim nRows As Long, nCols As Long, k As Long Dim nRows As Long, nCols As Long, k As Long A = Ain : nRows = UBound(A,1) : sum = 0 nCols = UBound(A, 2) : cells = nRows * nCols For k = 1 to nRows For m = 1 to nCols sum = sum + A(k,m) Next m Next k getMean = sum / cells End Function Worksterge

VBA Array to Worksheet

VBA steps to return array to worksheet

- Declare the function type as Variant
- In the function or sub declare a working array for calculations
 - Use application.caller for dimensions
- Write the code for values in working array
- At end of function set <function name> = <working array name>
- To use the function: select cells; enter function in formula bar; Cont+Shift+Enter Northridge

Function array2wks(<arguments>) As Variant</arguments>	
Dim userRows As Long	
Dim userColumns As Long	
Dim workArray() as Double	
'Statements below determine rows and columns	
userRows = Application.Caller.Rows.Count	
userColumns = Application.Caller.Columns.Count	
ReDim workArray(1 to userRows, 1 to userColumns	.)
'Place code here to compute all	
'components of workArray	
array2wks = workArray	
End Function	
California State University Northridge	28

Strings

- · Consider only variable length
- · Use Dim str as String
- Use & or + as concatenation operator to join two strings
- · Len(str) gives length of string
- Left, Right, and Mid give substrings in same manner as worksheet functions
- InStr function searches for substrings

29

California State University Northridge Getting Programs to Work

- VBA detects syntax errors (one-line)
- Compilation (before execution) detects
 structure errors (more than one line)
- Programs will halt at many errors (like divide by zero)
- Programs will return errors like #NAME
 to worksheet instead of results
- Use test cases to make sure that a new program is working correctly Northridge

Northridge

- Matrix operations (+ * / ^)
- Term-by-term operations (+ .* ./ .^)
- Valid operations between matrix, X, and scalar a: a + X, a - X, a * X, a ./ X, X/a
- Can create larger matrices from smaller ones if they are compatible
 - C = [A B] if A and B have same rows
 - -C = [A; B] if A and B have same columns

45

California State University Northridge

49

California State University Northridge

Some Der	ivative Expressions
$f_{i}' = \frac{f_{i+1} - f_{i}}{h} + O(h)$	$f_i^{'} = rac{f_i - f_{i-1}}{h} + O(h)$
$f_{i}' = \frac{f_{i+1} - f_{i-1}}{f_{i-1}} + O(h^{2})$	$f_i' = \frac{f_{i-2} - 4f_{i-1} + 3f_i}{2h} + O(h^2)$
Note order of	$f_{i}^{'} = \frac{-f_{i+2} + 4f_{i+1} - 3f_{i}}{2h} + O(h^{2})$
derivative, order or error, and direction (forward vs. backward)	$f_{i}^{"} = \frac{f_{i+1} + f_{i-1} - 2f_{i}}{L^{2}} + O(h^{2})$
California State University Northridge	n 61

Interpolation
 Given a table of data, (x_i, y_i) estimate a value of y for an x value not in the table Use N+1 table (x, y) points for Nth-order
polynomial
 Pick points that surround the value of x for which the polynomial is to be evaluated
 Get Newton polynomial from divided difference table

63

California State University Northridge

Χ.	V.	<i>←</i> a.		
Λ0	y 0	、 α ₀		
		$F_0 = \frac{y_1 - y_0}{x_1 - x_0}$	←a₁	
x ₁	У ₁		$S_0 = \frac{F_1 - F_0}{x_2 - x_0}$	←a₂
		$F_1 = \frac{y_2 - y_1}{x_2 - x_1}$	2 0	$T_0 = \frac{S_1 - S_0}{x_2 - x_0}$
x ₂	У ₂		$S_1 = \frac{F_2 - F_1}{x_2 - x_1}$	↑a ₃
		$F_2 = \frac{y_3 - y_2}{x_2 - x_2}$	3 11	
X ₃	y ₃	5 2		

